

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Pull Requests

If you’re thinking about making some changes, maybe fixing a bug, or adding a
snazzy new feature, first, thank you. Contributions are very welcome. Things
need to be manageable for the maintainers, however. So below you’ll find The
fastest way to get your pull request merged in. Some things, particularly how
you set up your branches and work with git, are just suggestions, but pretty good
ones.

	Create a remote to track the base jsdoc3/jsdoc repository
This is just a convenience to make it easier to update your <tracking branch>
(more on that shortly). You would execute something like:

 git remote add base git://github.com/jsdoc3/jsdoc.git

Here ‘base’ is the name of the remote. Feel free to use whatever you want.

	Set up a tracking branch for the base repository
We’re gonna call this your <tracking branch>. You will only ever update
this branch by pulling from the ‘base’ remote. (as opposed to ‘origin’)

 git branch --track pullpost base/master
 git checkout pullpost

Here ‘pullpost’ is the name of the branch. Fell free to use whatever you want.

	Create your change branch
Once you are in <tracking branch>, make sure it’s up to date, then create
a branch for your changes off of that one.

 git branch fix-for-issue-395
 git checkout fix-for-issue-395

Here ‘fix-for-issue-395’ is the name of the branch. Feel free to use whatever
you want. We’ll call this the <change branch>. This is the branch that
you will eventually issue your pull request from.

The purpose of these first three steps is to make sure that your merge request
has a nice clean diff that only involves the changes related to your fix/feature.

	Make your changes
On your <change branch> make any changes relevant to your fix/feature. Don’t
group fixes for multiple unrelated issues or multiple unrelated features together.
Create a separate branch for each unrelated changeset. For instance, if you’re
fixing a bug in the parser and adding some new UI to the default template, those
should be separate branches and merge requests.

	Add tests
Add tests for your change. If you are submitting a bugfix, include a test that
verifies the existence of the bug along with your fix. If you are submitting
a new feature, include tests that verify proper feature function, if applicable.
See the readme in the ‘test’ directory for more information

	Commit and publish
Commit your changes and publish your branch (or push it if it’s already published)

	Issue your pull request
On github.com, switch to your <change branch> and click the ‘Pull Request’
button. Enter some meaningful information about the pull request. If it’s a bugfix,
that doesn’t already have an issue associated with it, provide some info on what
situations that bug occurs in and a sense of it’s severity. If it does already have
an issue, make sure the include the hash and issue number (e.g. ‘#100’) so github
links it.

If it’s a feature, provide some context about the motivations behind the feature,
why it’s important/useful/cool/necessary and what it does/how it works. Don’t
worry about being too verbose. Folks will be much more amenable to reading through
your code if they know what its supposed to be about.

License

JSDoc 3 is free software, licensed under the Apache License, Version 2.0 (the
“License”). Commercial and non-commercial use are permitted in compliance with
the License.

Copyright (c) 2011-2012 Michael Mathews micmath@gmail.com
All rights reserved.

You may obtain a copy of the License at:
http://www.apache.org/licenses/LICENSE-2.0

In addition, a copy of the License is included with this distribution.

As stated in Section 7, “Disclaimer of Warranty,” of the License:

Licensor provides the Work (and each Contributor provides its Contributions)
on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied, including, without limitation, any warranties or
conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any risks
associated with Your exercise of mpermissions under this License.

The source code for JSDoc 3 is available at:
https://github.com/jsdoc3/jsdoc

Third-Party Software

JSDoc 3 includes or depends upon the following third-party software, either in
whole or in part. Each third-party software package is provided under its own
license.

MIT License

Several of the following software packages are distributed under the MIT
license, which is reproduced below:

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Async.js

Async.js is distributed under the MIT license, which is reproduced above.

Copyright (c) 2010 Caolan McMahon.

The source code for Async.js is available at:
https://github.com/caolan/async

crypto-browserify

License information for crypto-browserify is not available. It is assumed that
the package is distributed under the MIT license or a similar open source
license.

The source code for crypto-browserify is available at:
https://github.com/dominictarr/crypto-browserify

github-flavored-markdown

github-flavored-markdown is distributed under the BSD 3-clause license:

Copyright (c) 2007, John Fraser http://www.attacklab.net/ All rights
reserved.

Original Markdown copyright (c) 2004, John Gruber http://daringfireball.net/
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name “Markdown” nor the names of its contributors may be used
to endorse or promote products derived from this software without specific
prior written permission.

This software is provided by the copyright holders and contributors “as is”
and any express or implied warranties, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall the copyright owner or contributors be liable
for any direct, indirect, incidental, special, exemplary, or consequential
damages (including, but not limited to, procurement of substitute goods or
services; loss of use, data, or profits; or business interruption) however
caused and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of the use
of this software, even if advised of the possibility of such damage.

The source code for github-flavored-markdown is available at:
https://github.com/hegemonic/github-flavored-markdown

Google Code Prettify

Google Code Prettify is distributed under the Apache License 2.0, which is
included with this package.

Copyright (c) 2006 Google Inc.

The source code for Google Code Prettify is available at:
https://code.google.com/p/google-code-prettify/

Jasmine

Jasmine is distributed under the MIT license, which is reproduced above.

Copyright (c) 2008-2011 Pivotal Labs.

The source code for Jasmine is available at:
https://github.com/pivotal/jasmine

jasmine-node

jasmine-node is distributed under the MIT license, which is reproduced above.

Copyright (c) 2010 Adam Abrons and Misko Hevery (http://getangular.com).

The source code for jasmine-node is available at:
https://github.com/mhevery/jasmine-node

js2xmlparser

js2xmlparser is distributed under the MIT license, which is reproduced above.

Copyright (c) 2012 Michael Kourlas.

The source code for js2xmlparser is available at:
https://github.com/michaelkourlas/node-js2xmlparser

JSHint

JSHint is distributed under the MIT license, which is reproduced above.

Portions of JSHint are derived from JSLint, which is distributed under a
modified MIT license:

Copyright (c) 2002 Douglas Crockford (www.JSLint.com)

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

The Software shall be used for Good, not Evil.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

The source code for JSHint is available at:
https://github.com/jshint/jshint

markdown-js

markdown-js is distributed under the MIT license, which is reproduced above.

Copyright (c) 2009-2010 Dominic Baggott. Copyright (c) 2009-2010 Ash Berlin.
Copyright (c) 2011 Christoph Dorn christoph@christophdorn.com
(http://www.christophdorn.com).

The source code for markdown-js is available at:
https://github.com/evilstreak/markdown-js

Node.js

Portions of the Node.js source code are incorporated into the following files:

	rhino/fs.js

	rhino/path.js

	rhino/querystring.js

	rhino/util.js

Node.js is distributed under the MIT license, which is reproduced above.

Copyright Joyent, Inc. and other Node contributors. All rights reserved.

The source code for Node.js is available at:
https://github.com/joyent/node

node-browserify

Portions of the node-browserify source code are incorporated into the following
files:

	rhino/events.js

node-browserify is distributed under the MIT license, which is reproduced above.

The source code for node-browserify is available at:
https://github.com/substack/node-browserify

TaffyDB

TaffyDB is distributed under a modified BSD license:

All rights reserved.

Redistribution and use of this software in source and binary forms, with or
without modification, are permitted provided that the following condition is
met:

Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The source code for TaffyDB is available at:
https://github.com/hegemonic/taffydb

Tomorrow Theme for Google Code Prettify

License information for the Tomorrow Theme for Google Code Prettify is not
available. It is assumed that the package is distributed under an open source
license that is compatible with the Apache License 2.0.

Copyright (c) Yoshihide Jimbo.

The source code for the Tomorrow Theme is available at:
https://github.com/jmblog/color-themes-for-google-code-prettify

Rhino

Rhino is distributed under the following licenses:

MPL/GPL License

The majority of the source code for Rhino is available under a MPL 1.1/GPL 2.0
license. JSDoc 3 uses the source code under the MPL 1.1 license, which is
included in this distribution.

License for portions of the Rhino debugger

Additionally, some files are available under the BSD 3-clause license:

Copyright 1997, 1998 Sun Microsystems, Inc. All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of Sun Microsystems nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Source Code

The source code for Rhino is available at:
https://github.com/hegemonic/rhino

Underscore.js

Underscore.js is distributed under the MIT license, which is reproduced above.

Copyright (c) 2009-2012 Jeremy Ashkenas, DocumentCloud.

The source code for Underscore.js is available at:
https://github.com/documentcloud/underscore

wrench-js

wrench-js is distributed under the MIT license, which is reproduced above.

Copyright (c) 2010 Ryan McGrath.

The source code for wrench-js is available at:
https://github.com/ryanmcgrath/wrench-js

JSDoc 3

[image: Build Status] [http://travis-ci.org/jsdoc3/jsdoc]

An inline API documentation processor for JavaScript. JSDoc 3 is intended to be
an upgrade to JsDoc Toolkit (JSDoc 2).

Want to contribute to JSDoc? Please read CONTRIBUTING.md.

Installation

Use git to clone the official JSDoc repository [https://github.com/jsdoc3/jsdoc]:

git clone git@github.com:jsdoc3/jsdoc.git

Alternatively, you can download a .zip file for the
latest development version [https://github.com/jsdoc3/jsdoc/archive/master.zip]
or a previous release [https://github.com/jsdoc3/jsdoc/tags].

You can also install JSDoc within a Node.js project’s node_modules directory
using npm. To install the latest development version, change directories to your
Node.js project, then run the following command:

npm install git://github.com/jsdoc3/jsdoc.git

Note: Although you can install JSDoc with npm, JSDoc does not currently run
on Node.js. In addition, installing JSDoc globally with npm install -g is not
currently supported.

Usage

This example assumes that your working directory is the JSDoc application base
directory:

./jsdoc yourSourceCodeFile.js

For information about the supported command-line options, use the --help
option.

./jsdoc --help

Generated documentation will appear in the folder specified by the
--destination option, or in a folder named “out” by default.

Dependencies

JSDoc 3 uses the Mozilla Rhino engine, which requires Java. JSDoc 3 is known to
work with version 1.6.0_24 of Java.

JSDoc 3 uses advanced features in Mozilla Rhino that are only available in or
after version 1.7R3. In addition, JSDoc 3 requires several customizations to the
standard Rhino distribution. The customized version of Rhino is included with
JSDoc.

In rare cases, users may have their Java CLASSPATH configured to override the
included Rhino and point to an older version of Rhino instead. If this is the
case, simply correct the CLASSPATH to remove the older Rhino.

The version of Rhino distributed with JSDoc 3 can be found here:
https://github.com/hegemonic/rhino

Debugging

Rhino is not always very friendly when it comes to reporting errors in
JavaScript. Luckily, it comes with a full-on debugger included that can be much
more useful than a simple stack trace. To invoke JSDoc with the debugger, run
the following command on Windows:

jsdoc --debug

Or on OS X, Linux, and other POSIX-compliant systems:

./jsdoc --debug

If you can’t get the short-form commands to work, try invoking Java directly:

java -cp lib/js.jar org.mozilla.javascript.tools.debugger.Main \
-debug -modules node_modules -modules rhino -modules lib -modules . \
jsdoc.js your/script.js

Note: --debug must be the first argument to the short-form command.

This will open a debugging window. Click Debug > Break on Exceptions, then click
Run. If there is an error, you should see exactly where it is in the source
code.

See Also

Project Documentation: http://usejsdoc.org/ (under development)Project Documentation Source: https://github.com/jsdoc3/jsdoc3.github.comJSDoc User’s Group: http://groups.google.com/group/jsdoc-usersJSDoc 3 Ant Task: https://github.com/jannon/jsdoc3-ant-taskProject Announcements: http://twitter.com/jsdoc3

License

JSDoc 3 is copyright (c) 2011-2012 Michael Mathews micmath@gmail.com.

JSDoc 3 is free software, licensed under the Apache License, Version 2.0. See
the file LICENSE.md in this distribution for more details.

JSDoc 3 change history

This file describes notable changes in each version of JSDoc 3. To download a specific version of JSDoc 3, see GitHub’s tags page [https://github.com/jsdoc3/jsdoc/tags].

3.1.1 (February 2013)

	Resolved a crash when no input files contain JSDoc comments. (#329)

	Resolved a crash when JSDoc cannot identify the common prefix of several paths. (#330)

	Resolved a crash when the full path to JSDoc contained at least one space. (#347)

	Files named README.md or package.json will now be processed when they are specified on the command line. (#350)

	You can now use @emits as a synonym for @fires. (#324)

	The module jsdoc/util/templateHelper now allows you to specify the CSS class for links that are generated by the following methods: (#331)

	getAncestorLinks

	getSignatureReturns

	getSignatureTypes

	linkto

3.1.0 (January 2013)

Major changes

	You can now use the new @callback tag to provide information about a callback function’s signature. To document a callback function, create a standalone JSDoc comment, as shown in the following example:

/**
 * @class
 */
function MyClass() {}

/**
 * Send a request.
 *
 * @param {MyClass~responseCb} cb - Called after a response is received.
 */
MyClass.prototype.sendRequest = function(cb) {
 // code
};

/**
 * Callback for sending a request.
 *
 * @callback MyClass~responseCb
 * @param {?string} error - Information about the error.
 * @param {?string} response - Body of the response.
 */

	The inline link tag, {@link}, has been improved:

	You can now use a space as the delimiter between the link target and link text.

	In your conf.json file, you can now enable the option templates.cleverLinks to display code links in a monospace font and URL links in plain text. You can also enable the option templates.monospaceLinks to display all links in a monospace font. Note: JSDoc templates must be updated to respect these options.

	You can now use the new inline tags {@linkplain}, which forces a plain-text link, and {@linkcode}, which forces a monospace link. These tags always override the settings in your conf.json file. (#250)

	JSDoc now provides a -l/--lenient option that tells JSDoc to continue running if it encounters a non-fatal error. (Multiple issues)

	A template’s publish.js file should now assign its publish function to exports.publish, rather than defining a global publish function. The global publish function is deprecated and may not be supported in future versions. JSDoc’s built-in templates reflect this change. (#166)

	The template helper (templateHelper.js) exports a variety of new functions for finding information within a parse tree. These functions were previously contained within the default template. (#186)

	Updated the fs and path modules to make their behavior more consistent with Node.js. In addition, created extended versions of these modules with additional functionality. (Multiple commits)

	Updated or replaced numerous third-party modules. (Multiple commits)

	Reorganized the JSDoc codebase in preparation for future enhancements. (Multiple commits)

	JSDoc now embeds a version of Mozilla Rhino that recognizes Node.js packages, including package.json files. (Multiple commits)

	Node.js’ npm utility can now install JSDoc from its GitHub repository. Note: JSDoc is not currently compatible with Node.js. However, this change allows JSDoc to be installed as a dependency of a Node.js project. In this version, global installation with npm is not supported. (Multiple commits)

Enhancements

	If a README.md file is passed to JSDoc, its contents will be included on the index.html page of the generated documentation. (#128)

	The @augments tag can now refer to an undocumented member, such as window.XMLHTTPRequest. (#160)

	The @extends tag can now refer to an undocumented member, such as window.XMLHttpRequest. In addition, you can now use @host as a synonym for @extends. (#145)

	The @lends tag is now supported in multiline JSDoc comments. (#163)

	On Windows, jsdoc.cmd now provides the same options as the jsdoc shell script. (#127)

	JSDoc now provides setTimeout(), clearTimeout(), setInterval(), and clearInterval() functions. (Multiple commits)

	JSDoc no longer provides a global exit() function. Use process.exit() instead. (1228a8f7)

	JSDoc now includes additional shims for Node.js’ built-in modules. Note: Many of these shims implement only the functions that JSDoc uses, and they may not be consistent with Node.js’ behavior in edge cases. (Multiple commits)

	JSDoc now provides a -v/--version option to display information about the current version. (#303)

	When running tests, you can now use the --nocolor option to disable colored output. On Windows, colored output is always disabled. (e17601fe, 8bc33541)

Bug fixes

	When using the @event tag to define an event within a class or namespace, the event’s longname is now set correctly regardless of tag order. (#280)

	The @property tag no longer results in malformed parse trees. (20f87094)

	The jsdoc and jsdoc.cmd scripts now work correctly with paths that include spaces. (#127, #130)

	The jsdoc script now works correctly on Cygwin and MinGW, and with the dash shell. (#182, #184, #187)

	The -d/--destination option is no longer treated as a path relative to the JSDoc directory. Instead, it can contain an absolute path, or a path relative to the current working directory. (f5e3f0f3)

	JSDoc now provides default options for the values in conf.json. (#129)

	If the conf.json file does not exist, JSDoc no longer tries to create it, which prevents errors if the current user does not have write access to the JSDoc directory. (d2d05fcb)

	Doclets for getters and setters are now parsed appropriately. (#150)

	Only the first asterisk is removed from each line of a JSDoc comment. (#172)

	If a child member overrides an ancestor member, the ancestor member is no longer documented. (#158)

	If a member of a namespace has the same name as a namespace, the member is now documented correctly. (#214)

	The parse tree now uses a single set of properties to track both JSDoc-style type information and Closure Compiler-style type information. (#118)

	If a type has a leading !, indicating that it is non-nullable, the leading ! is now removed from the type name. (#226)

	When Markdown formatting is enabled, underscores in inline {@link} tags are no longer treated as Markdown formatting characters. (#259)

	Markdown links now work correctly when a JavaScript reserved word, such as constructor, is used as the link text. (#249)

	Markdown files for tutorials are now parsed based on the settings in conf.json, rather than using the “evilstreak” Markdown parser in all cases. (#220)

	If a folder contains both tutorial source files and .js files, JSDoc no longer attempts to parse the .js files as JSON files. (#222)

	The “evilstreak” Markdown parser now works correctly with files that use Windows-style line endings. (#223)

	JSDoc no longer fails unit tests when the conf.json file is not present. (#206)

	On Windows, JSDoc now passes all unit tests. (Multiple commits)

Plugins

	The new partial plugin adds support for a @partial tag, which links to an external file that contains JSDoc comments. (#156)

	The new commentsOnly plugin removes everything in a file except JSDoc-style comments. You can use this plugin to document source files that are not valid JavaScript, including source files for other languages. (#304)

	The new eventDumper plugin logs information about parser events to the console. (#242)

	The new verbose plugin logs the name of each input file to the console. (#157)

Template enhancements

Default template

	The template output now includes pretty-printed versions of source files. This feature is enabled by default. To disable this feature, add the property templates.default.outputSourceFiles: false to your conf.json file. (#208)

	You can now use the template if it is placed outside of the JSDoc directory. (#198)

	The template no longer throws an error when a parameter does not have a name. (#175)

	The navigation bar now includes an “Events” section if any events are documented. (#280)

	Pages no longer include a “Classes” header when no classes are documented. (eb0186b9)

	Member details now include “Inherited From” section when a member is inherited from another member. (#154)

	If an @author tag contains text in the format “Jane Doe jdoe@example.com”, the value is now converted to an HTML mailto: link. (#326)

	Headings for functions now include the function’s signature. (#253)

	Type information is now displayed for events. (#192)

	Functions now link to their return type when appropriate. (#192)

	Type definitions that contain functions are now displayed correctly. (#292)

	Tutorial output is now generated correctly. (#188)

	Output files now use Google Code Prettify with the Tomorrow theme as a syntax highlighter. (#193)

	The index.html output file is no longer overwritten if a namespace called index has been documented. (#244)

	The current JSDoc version number is now displayed in the footer. (#321)

Haruki template

	Members are now contained in arrays rather than objects, allowing overloaded members to be documented. (#153)

	A clearer error message is now provided when the output destination is not specified correctly. (#174)

3.0.1 (June 2012)

Enhancements

	The conf.json file may now contain source.include and source.exclude properties. (#56)

	source.include specifies files or directories that JSDoc should always check for documentation.

	source.exclude specifies files or directories that JSDoc should never check for documentation.
These settings take precedence over the source.includePattern and source.excludePattern properties, which contain regular expressions that JSDoc uses to search for source files.

	The -t/--template option may now specify the absolute path to a template. (#122)

Bug fixes

	JSDoc no longer throws exceptions when a symbol has a special name, such as hasOwnProperty. (1ef37251)

	The @alias tag now works correctly when documenting inner classes as globals. (810dd7f7)

Template improvements

	The default template now sorts classes by name correctly when the classes come from several modules. (4ce17195)

	The Haruki template now correctly supports @example, @members, and @returns tags. (6580e176, 59655252, 31c8554d)

3.0.0 (May 2012)

Initial release.

 js2xmlparser is licensed under the MIT license:

Copyright (C) 2012 Michael Kourlas

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 See http://taffydb.com.

Creating and Enabling a Plugin

There are two steps required to create and enable a new JSDoc plugin:

	Create a JavaScript module to contain your plugin code.

	Include that module in the “plugins” array of conf.json. You can specify
an absolute or relative path. If you use a relative path, JSDoc searches for
the plugin in the current working directory and the JSDoc directory, in that
order.

For example, if your plugin source code was saved in the “plugins/shout.js”
file in the current working directory, you would include it by adding a
reference to it in conf.json like so:

...
"plugins": [
 "plugins/shout"
]
...

Authoring JSDoc 3 Plugins

The plugin system for JSDoc 3 is pretty powerful and provides plugin authors
multiple methods, from high-level to low-level, of affecting document generation:

	Defining event handlers

	Defining tags

	Defining a parse tree node processor

Event Handlers

At the highest level, a plugin may register handlers for specific named-events
that occur in the documentation generation process. JSDoc will pass the handler
an event object containing pertinent information. Your plugin module should
export a handlers object that contains your handler, like so:

exports.handlers = {
 newDoclet: function(e) {
 //Do something when we see a new doclet
 }
}

Event: fileBegin

This is triggered when the parser has started on a new file. You might use this
to do any per-file initialization your plugin needs to do.

The event object will contain the following properties:

	filename: the name of the file

Event: beforeParse

This is triggered before parsing has begun. You can use this method to modify
the source code that will be parsed. For instance, you might add some virtual
doclets so they get added to the documentation.

The event object will contain the following properties:

	filename: the name of the file

	source: the contents of the file

Below is an example that adds a virtual doclet for a function to the source so
that it will get parsed and added to the documentation. This might be done to
document methods that will be present for end-user use, but might not be in the
source code being documented, like methods provided by a third-party superclass:

exports.handlers = {
 beforeParse: function(e) {
 var extraDoc = ["",
 "/**",
 "Here's a description of this function",
 "@name superFunc",
 "@memberof ui.mywidget",
 "@function",
 "*/", ""];
 e.source += extraDoc.join("\n");
 }
}

Event: jsdocCommentFound

This is fired whenever a jsdoc comment is found. It may or may not be associated
with any code. You might use this to modify the contents of a comment before it
is processed.

The event object will contain the following properties:

	filename: the name of the file

	comment: the text of the comment

	lineno: the line number the comment was found on

Event: symbolFound

This is fired when the parser comes across a symbol in the code it thinks is
important. This usually means things that one might want to document –
variables, functions, object literals, object property definitions,
assignments, etc., but the symbols the parser finds can be modified by a plugin
(see “Node Visitors” below).

The event object will contain the following properties:

	filename: the name of the file

	comment: the comment associated with the symbol, if any

	id: the unique id of the symbol

	lineno: the line number the symbols was found on

	range: an array containing the first and last characters of the code
associated with the symbol

	astnode: the node of the parse tree

	code: information about the code. This usually contains “name”, “type”, and
“node” properties and might also have “value”, “paramnames”, or “funcscope”
properties depending on the symbol.

Event: newDoclet

This is the highest level event and is fired when a new doclet has been created.
This means that a jsdoc or a symbol has been processed and the actual doclet
that will be passed to the template has been created.

The event object will contain the following properties:

	doclet: the new doclet that was created

The properties of the doclet can vary depending on the comment or symbol used to
create it. Additionally, tag definitions (See “Tag Definitions” below) can
modify the doclet. Some common properties you’re likely to see include:

	comment: the text of the comment (may be empty if symbol is undocumented)

	meta: some information about the doclet, like filename, line number, etc.

	description

	kind

	name

	longname: the fully qualified name, including memberof info

	memberof: the function/class/namespace that this is a member of

	scope: (global|static|instance|inner)

	undocumented: true if the symbol didn’t have a jsdoc comment

	defaultvalue: the specified default value for a property/variable

	type: the specified type of parameter/property/function return (e.g. Boolean)

	params: an object containing the list of parameters to a function

	tags: an object containing the set of tags not handled by the parser (note:
this is only available if allowUnknownTags is set to true in the conf.json
file for JSDoc3)

Below is an example of a newDoclet handler that shouts the descriptions:

exports.handlers = {
 newDoclet: function(e) {
 // e.doclet will refer to the newly created doclet
 // you can read and modify properties of that doclet if you wish
 if (typeof e.doclet.description === 'string') {
 e.doclet.description = e.doclet.description.toUpperCase();
 }
 }
};

Event: fileComplete

This is fired when the parser is done with a file. You might use this to
perform some cleanup for your plugin.

The event object will contain the following properties:

	filename: the name of the file

	source: the contents of the file

Tag Definitions

Adding tags to the tag dictionary is a mid-level way to affect documentation
generation. Before a newDoclet event is triggered, jsdoc comment blocks are
parsed to determine the description and any jsdoc tags that may be present. When
a tag is found, if it has been defined in the tag dictionary, it is given a
chance to modify the doclet.

Plugins can define tags by exporting a defineTags function. That function will
be passed a dictionary that can be used to define tags, like so:

exports.defineTags = function(dictionary) {
 //define tags here
}

The Dictionary

The dictionary provides the following methods:

	defineTag(title, opts)
Used to define tags.
The first parameter is the name of the tag (e.g. “param” or “overview”). the
second is an object containing options for the tag. The options can be the
following:

	mustHaveValue (Boolean): whether or not the tag must have a value
(e.g “@name TheName”)

	mustNotHaveValue (Boolean): whether or not the tag must not have a value

	canHaveType (Boolean): Whether or not the tag can have a type
(e.g. “@param {String} name the description of name”)

	canHaveName (Boolean): Whether or not the tag can have a name
(e.g. “@param {String} name the description of name”)

	isNamespace (Boolean): Whether or not the tag marks a doclet as representing
a namespace. The “@module” tag, for instance, sets this to true.

	onTagged (Function): A callback function executed when the tag is found. The
function is passed two parameters: the doclet and the tag. Here’s an example:

 dictionary.defineTag('instance', {
 onTagged: function(doclet, tag) {
 doclet.scope = "instance";
 }
 });

The defineTag method returns a Tag. The Tag object has a method “synonym”
that can be used to declare synonyms to the tag. For example:

 dictionary.defineTag('exception', {
 <options for exception tag>
 })
 .synonym('throws');

	lookUp(title)
Used to lookup a tag. Returns either the tag or false if it’s not defined

	isNamespace(kind)
Used to determine if a particular doclet type represents a namespace

	normalise(title)
Used to find the canonical name of a tag. The name passed in might be that
name or a synonym

Node Visitors

At the lowest level, plugin authors can process each node in the parse tree by
defining a node visitor that will visit each node, creating an opportunity to
do things like modify comments and trigger parser events for any arbitrary piece
of code.

Plugins can define a node visitor by exporting a nodeVisitor object that
contains a visitNode function, like so:

exports.nodeVisitor = {
 visitNode: function(node, e, parser, currentSourceName) {
 //do all sorts of crazy things here
 }
}

The function is called on each node with the following parameters:

	node: the node of the parse tree

	e: the event. If the node is one that the parser handles, this will already
be populated with the same things described in the symbolFound event above.
Otherwise, it will be an empty object on which to set various properties.

	parser: the parser

	currentSourceName: the name of the file being parsed

Making things happen

The primary reasons to implement a node visitor are to be able to document
things that aren’t normally documented (like function calls that create classes)
or to auto generate documentation for code that isn’t documented. For instance,
a plugin might look for calls to a “_trigger” method since it knows that means
an event is fired and then generate documentation for the event.

To make things happen, the visitNode function should modify properties
of the event parameter. In general the goal is to construct a comment and then
get an event to fire. After the parser lets all of the node visitors have a
look at the node, it looks to see if the event object has a comment
property and an event property. If it has both, the event named in the event
property is fired. The event is usually “symbolFound” or “jsdocCommentFound”,
but theoretically, a plugin could define its own events and handle them.

Example

Below is an example of what a plugin for documenting jQuery UI widgets might do.
jQuery UI uses a factory function call to create widget classes. The plugin
looks for that function call and creates a symbol with documentation. It also
looks for any “this._trigger” function calls and automatically creates
documentation for the events that are triggered:

exports.nodeVisitor = {
 visitNode: function(node, e, parser, currentSourceName) {
 if (node.type === Token.OBJECTLIT && node.parent && node.parent.type === Token.CALL && isInWidgetFactory(node, 1)) {
 var widgetName = node.parent.arguments.get(0).toSource();
 e.id = 'astnode' + node.hashCode(); // the id of the object literal node
 e.comment = String(node.parent.jsDoc||'');
 e.lineno = node.parent.getLineno();
 e.filename = currentSourceName;
 e.astnode = node;
 e.code = {
 name: "" + widgetName.substring(1, widgetName.length() - 1),
 type: "class",
 node: node
 };
 e.event = "symbolFound";
 e.finishers = [parser.addDocletRef];

 addCommentTag(e, "param", "{Object=} options A set of configuration options");
 }
 else if(isTriggerCall(node)) {
 var nameNode = node.arguments.get(0);
 eventName = String((nameNode.type == Token.STRING) ? nameNode.value : nameNode.toSource()),
 func = {},
 comment = "@event\n",
 eventKey = "";

 if (node.enclosingFunction) {
 func.id = 'astnode'+node.enclosingFunction.hashCode();
 func.doclet = parser.refs[func.id];
 }
 if(func.doclet) {
 func.doclet.addTag("fires", eventName);
 if (func.doclet.memberof) {
 eventKey = func.doclet.memberof + "#event:" + eventName;
 comment += "@name " + func.doclet.memberof + "#" + eventName;
 }
 }
 e.comment = comment;
 e.lineno = node.getLineno();
 e.filename = currentSourceName;
 e.event = "jsdocCommentFound";
 }
 }
};
function isTriggerCall(node) {
 if(node.type != Token.CALL) { return false; }
 var target = node.getTarget(),
 left = target && target.left && String(target.left.toSource()),
 right = target && target.right && String(target.right.toSource());
 return (left === "this" && right === "_trigger");
}

function isInWidgetFactory(node, depth) {
 var parent = node.parent,
 d = 0;
 while(parent && (!depth || d < depth)) {
 if (parent.type === Token.CALL) {
 var target = parent.getTarget(),
 left = target && target.left && String(target.left.toSource()),
 right = target && target.right && String(target.right.toSource());
 return ((left === "$" || left === "jQuery") && right === "widget");
 } else {
 parent = parent.parent;
 d++;
 }
 }
 return false;
}

You’ll notice a “finishers” property set. The finishers property should contain
an array of functions to be called after the event is fired and all the handlers
have processed it. The parser provides an addDocletRef function that adds the
doclet to the map (keyed off of the id property) of doclets it knows about.

Lastly, the visitors are executed in the order the plugins are listed in the
conf.json file. A plugin can stop later plugins from visiting a node by
setting a stopPropagation property on the event object (e.stopPropagation = true).
A plugin can stop the event from firing setting a preventDefault property.

Throwing Errors

If you wish your plugin to throw an error, do it using the handle function in
the jsdoc/util/error module:

require('jsdoc/util/error').handle(new Error('I do not like green eggs and ham!'));

By default, this will throw the error, halting the execution of JSDoc. However,
if the user enabled JSDoc’s --lenient switch, JSDoc will simply log the error
to the console and continue.

Packaging JSDoc 3 Plugins

The JSDoc 3 Jakefile has an install task that can be used to install a
plugin into the JSDoc directory. So running the following will install the
plugin:

$>jake install[path/to/YourPluginFolder]

Note: On some operating systems, including OS X, you may need to quote the
target name and parameters:

$>jake 'install[path/to/YourPluginFolder]'

The task is passed a directory that should look something like the following:

YourPluginFolder
 |- plugins
 | |- YourPlugin.js
 | \- test
 | |- fixtures
 | | \- YourFixtures.js
 | \- specs
 | \- YourTests.js
 \- templates
 \- YourTemplate
 \- publish.js

How to use the Markdown plugin

For most users, all you need to do is add the plugin to your JSDoc configuration (conf.json) as you would any other, by adding a reference to the plugin in the "plugins" entry:

...
"plugins": ["plugins/markdown"]
...

This will cause Markdown in @description tags (including implicit descriptions without tags), @classdesc tags, @param tags, @property tags, and @returns tags to be parsed.

Also, be sure to use leading asterisks in your doc comments! If you omit the leading asterisks, JSDoc’s code parser may remove other asterisks that are used for Markdown formatting.

Configuring the Markdown plugin

The plugin also offers several configuration options for advanced users who want GitHub integration, extended tag support, etc. All configuration for the Markdown plugin should be added to a "markdown" property in your JSDoc configuration:

...
"plugins": ["plugins/markdown"],

"markdown": {
 "opt1": "value",
 "opt2": ["foo", "bar", "baz"]
}
...

Choosing a parser

The plugin currently supports two Markdown parsers. You can select which parser to use by adding a "parser" property to your Markdown configuration:

...
"plugins": ["plugins/markdown"],

"markdown": {
 "parser": "gfm"
}
...

Dominic “evilstreak” Baggott’s markdown-js

The default parser is Dominic Baggott’s excellent markdown-js [https://github.com/evilstreak/markdown-js]. It can be explicitly selected by setting the parser to evilstreak and has one additional (and optional) configuration option, dialect, which can be used to select which of markdown-js’ built-in dialects to use. If omitted, markdown-js’ default dialect will be used.

...
"plugins": ["plugins/markdown"],

"markdown": {
 "parser": "evilstreak",
 "dialect": "Maruku"
}
...

GitHib Flavored Markdown

The alternative parser is the modified Showdown parser supplied by GitHub for their GitHub Flavored Markdown [http://github.github.com/github-flavored-markdown/]. GFM provides several enhancements to standard Markdown syntax (see its documentation) intended to be useful to developers. It also has the ability to quickly link to GitHub repositories, files, and issues. It can be selected by setting the parser to gfm and supports three additional (and optional) configuration options.

The hardwrap option controls the hard wrapping of line ends. Unlike standard Markdown, GFM considers a single newline to indicate a “hard break” in the paragraph, but this doesn’t work well with the line length limitations commonly used with comment documentation, so is disabled by default. If you want to turn hard wrapping back on, set hardwrap to true (or any non-falsy value).

The githubRepoName and githubRepoOwner indicate which GitHub repo should be used for GitHub links that do not fully specify a repo. These options have no effect unless used together, and if they are omitted, several of GFM’s default link types will be unavailable. Conversely, if you supply both github* options but do not explicitly select gfm as your parser, it will be automatically selected for you.

...
"plugins": ["plugins/markdown"],

"markdown": {
 "parser": "gfm",
 "hardwrap": true
}
...

Why two parsers?

The “evilstreak” parser is flexible, extensible, currently maintained, and was the only parser available in earlier versions of the Markdown plugin, but doesn’t support the useful GFM extensions. The “gfm” parser is based on the no-longer-maintained Showdown parser, but it provides GFM extensions.

In the future, if GFM support is made available for the “evilstreak” parser, this plugin will drop the “gfm” parser in favor of that support.

Extended tag support

While the Markdown plugin already supports JSDoc’s default tags, if you’re using other plugins, you may well have extra tags available. You can tell the Markdown plugin to handle those extra tags as well using the tags property, which is an array of the tags* it should check in addition to the default set.

...
"plugins": ["plugins/markdown"],

"markdown": {
 "tags": ["foo", "bars", "bazzes"]
}
...

* Because the Markdown plugin works with JSDoc’s internal representation rather than with the source comments, the names you need to enter in the tags property aren’t necessarily the same as the actual tag names. For example, in the default set of tags, @param is stored under params. If you are having trouble getting the Markdown plugin to work with your extra tags, either take a peek at the output of JSDoc’s --explain command-line parameter (which displays the internal state that plugins work with) or ask the plugin author which “doclet properties” their plugin uses. The Markdown plugin supports strings, arrays, and objects/subdoclets.

 To create or use your own template, create a folder, and give it the name of your template, for example “mycooltemplate”. Within this folder create a file named “publish.js”. That file must define a global method named “publish”. For example:

/**
 * Turn the data about your docs into file output.
 * @global
 * @param {TAFFY} data - A TaffyDB collection representing
 * all the symbols documented in your code.
 * @param {object} opts - An object with options information.
 */
function publish(data, opts) {
 // do stuff here to generate your output files
}

To invoke JSDoc 3 with your own template, use the -t command line option, giving it the path to your template folder.

./jsdoc mycode.js -t /path/to/mycooltemplate

 The default template for JSDoc 3 uses: the Taffy Database library [http://taffydb.com/] and the Underscore Template library [http://documentcloud.github.com/underscore/#template].

OVERVIEW

JSDoc 3 Haruki is an experimental template optimised for use with publishing processes that consume either JSON or XML. Whereas the default JSDoc template outputs an HTML representation of your API, Haruki will output a JSON, or optionally an XML, representation.

Currently Haruki only supports a subset of the tags supported by the default template. Those are:

	@name

	@desc

	@type

	@namespace

	@method (or @function)

	@member (or @var)

	@class

	@mixin

	@event

	@param

	@returns

	@throws

	@example

	@access (like @private or @public)

This limited support set is intentional, as it is meant to be a usable set that could be shared with either JavaScript or PHP documentation – another experimental tool, named “Vonnegut”, can produce Haruki compatible JSON from PHPDoc tags.

Note: @links will appear in the output untransformed, there is no way to know at this stage what the file layout of your output will eventually be. It is assumed that whatever process emits the final output file/s will transform @link tags at that point.

USAGE

./jsdoc myscript.js -t templates/haruki -d console -q format=xml

The results of this command will appear in stdout and can be piped into other tools for further processing.

MORE

If you are interested in Haruki, you are encouraged to discuss your questions or ideas on the JSDoc-Users mailing list and fork/contribute to this project.

For more information contact Michael Mathews at micmath+haruki@gmail.com.

Testing JSDoc 3

Running Tests

Running tests is easy. Just change your working directory to the jsdoc folder
and run the following command on Windows:

jsdoc -T

Or on OS X, Linux, and other POSIX-compliant platforms:

./jsdoc -T

If you can’t get the short-form commands to work, try invoking Java directly:

java -cp lib/js.jar org.mozilla.javascript.tools.shell.Main \
-modules node_modules -modules rhino -modules lib -modules . \
jsdoc.js -T

Writing Tests

Adding tests is pretty easy, too. You can write tests for JSDoc itself (to
make sure tags and the parser, etc. are working properly), tests for plugins, and/or
tests for templates.

JSDoc 3 uses Jasmine (https://github.com/pivotal/jasmine) as its testing framework.
Take a look at that project’s wiki for documentation on writing tests in general.

Tests for JSDoc

Take a look at the files in the test directory for many examples of
writing tests for JSDoc itself. The test\fixtures directory hold fixtures
for use in the tests, and the test\specs directory holds the tests themselves.

Tests for plugins

Tests for plugins are found in the plugins\test directory. Plugins containing
tests that were installed with the Jakefile install task will be run automatically.

Tests for templates

TODO

This is a header

This is some text.

this is some code

	this

	a

	list

X3DOM conventions

File Encoding, Indentation

With all X3DOM source files the following file format
and encoding conventions have to be used:

	File encoding: UTF-8, without Byte-Order-Mark (BOM)

	Line endings: LF (Unix Line Feed)

	Indentation: 4 spaces (unless otherwise noted)

A note about indentation: Essentially this is a
no-tab policy. Which means no tab chars in the code to be used
for indentation. Most editors allow you to configure using tabs,
but then save the code as spaces. This is very convenient
functionality you should use if you are used to to indent with
the TAB key.

TODO: basic guide of how to set this for webstorm,vi,emacs,sublime,textmate

Commit early, commit often

If at all possible commit small units of work very often.
Large commits, with no updates of your codebase in between
most likely will lead to conflicts in projects with more
than one committer. Committing often also lets your fellow
programmers know what you are working on and integrate your
changes early on.

Partition your work into small logical pieces and commit as
often as possible. View commit and push as a extended
save operation. It’s far better to have ten 10-liner commits,
than one 100 liner.

Use descriptive commit messages

Try to avoid non-descriptive commit messages unless it’s really small
correction like fixing a typo or forgotton semicolon. Always describe
what you have done succinctly. If you are closing a ticket with this
commit refer the ticket in your message. For example:

git commit -m "Fixing readability problem reported with issue #123"

The following messages also close the referred ticket [https://help.github.com/articles/closing-issues-via-commit-messages] in GitHub. No
need to log in for closing tickets:

git commit -m "Typo, fixing #123"
git commit -m "Added CAD example closing #123"

You can refer to github issues, commits and tickets by using the SHA or
issue number:

git commit -m "Fixing bug introduced with 70b0d56e1aca5ec6b55b915b1810a5caeddfcd62"

More:

	GitHub Help

Git Workflow

Make it a policy to issue a git pull before you start working and
then again before you commit and push. Push your work as soon as
possible - ideally after a commit.

Make yourself familiar with the stash [http://git-scm.com/book/en/Git-Tools-Stashing] command if you need to set
aside changes during work.
Even more important is to use local branches [http://git-scm.com/book/en/Git-Branching-Branch-Management] for developing a new
feature or trying things out. It is very easy to do and you will have
less merge conflicts. If you go this route, it important that you
regulary merge changes from the upstream master into your local branch
to keep up to date.

Don’t push your branch to GitHub unless more than one person is workin
on that branch. If you need to sync local branches from say your
workstation to a laptop or home machine, there are other ways (ssh,
format-patch, etc.)

Familiarize yourself with the use of the source control on
the command line (Git Manual [http://git-scm.com/doc]). Only after you understand how this
works, you can switch to GUI tools. It’s important to understand
the basics of the versioning system. The GUI tools disguise much
of what’s going on. Learning to use a source control system is a
one-time effort that will benefit you far into the future
(even if versioning systems change, the learning is only incremental).
Code conflicts are inevitabel and mastering your tool
can help to resove those conflicts.

Some pointers:

	Git aliases https://git.wiki.kernel.org/index.php/Aliases

	Git Manual [http://git-scm.com/doc]

The versioning system is not a replacement for communication.

JS Coding Conventions

The following coding guidelines should be followed:

Semicolon

Always end a statement mit a semicolon. For C/C++ coders that’s ususally
a non issue. If you are coming from another dynamic language, it happens
frequently to forget the semicolon.

if/else shortcuts

Avoid the use of if/else constructs without curly braces. It impaires
readability and is a potential source for errors:

Good:

if (condition) {
 doSomething();
}
else {
 doAnotherThing();
}

Bad:

if (condition)
 doSomething();
else
 doOtherThing()

Other conventions

	Empty line between functions

	Anonymous functions only if really necessary

	Don’t forget that = this when adding internal functions

	JS only has global and function-local scope, but no block-local scope
(variables declared in for loops are accessible in whole function).
Variables thus should be declared/initialized at beginning of function

	Use speaking names (verbNoun)

	methods and variables start with lower-case character, e.g. doStuff()

	“classes” internally start with upper-case character, e.g. Transform

	For inspiration:
http://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml

Documentation and Tests

	Document your code yourself. JSDoc is ok, ideally also in prose documentation

	Update documentation after code modifications

	Write/add test for new feature

	When bug was found, build test for verifying bug. After fix, test should work

	Don’t commit configuration files of IDE or other generated files

Python Files

For Python there are official, very sane, guidelines outlined in
PEP-8 [http://www.python.org/dev/peps/pep-0008/]. All Python code should follow this styleguide.

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_images/jsdoc.png
“build passing

